James Bradley

A l’article Cassini vs Roemer us vaig comentar que James Bradley va
fer una demostració molt més espectacular que la velocitat de la llum
és finita. Moltes persones (bé, només 2) em van dir que estaven
impacients per saber-ho. Vaig a satisfer la seva curiositat. Compte que
l’article és un pel llarg, així que llegiu-lo amb calma.

[@more@]

Recordar, abans de començar, que la circumferència té 360 graus, un grau 60 minuts i un minut 60 segons. Quan es parla de minuts es posa una cometa simple, per exemple, un minut d’arc seria 1′ i els segons amb cometa doble, per exemple 1". Sempre parlaré de segons d’arc (cometa doble).

Quan Copèrnic va suggerir que la Terra girava al voltant de Sol, els seus detractors van argumentar que les estrelles haurien de donar desplaçaments parláctics. Si la Terra es movia, l’esfera celeste hauria de canviar degut al moviment igual que si estem en una habitació i ens movem: veiem el nostre entorn diferent. Havia un problema: no s’observava paraltage. Estigués on estigués la Terra, les estrelles no es movien del lloc.

Copèrnic va atribuir aquest problema a que les distàncies eren tan grans en comparació al diàmetre de l’òrbita de la Terra que la paralatge era massa petita com per poder apreciar-se. El cercle de l’òrbita terrestre seria gairebé un punt. Era una època de grans incògnites respecte a les magnituts de l’Univers.

Considerem a Sirio que és l’estrella més brillant del cel (després del Sol, per descomptat). A quina distància hauria d’estar el Sol per brillar com ho fa Sirio? Aquesta sensacional pregunta se la va fer Edmond Halley que fent números va concloure que havia d’estar unes 120.000 vegades més lluny que el que està el Sol. Això significaria una patalatge d’1" per any i amb els telescopis de l’època era indetectable. Ara bé, també es podria dir que Sirio llueix molt més que el Sol i està més lluny o molt menys que el Sol i està més a prop. Si fora d’aquesta segona forma potser sí podria detectar-se la seva distància per paralatge. Així va començar la recerca de la paralatge estel·lar (avui sabem que Sirio és bastant més brillant que el Sol i està de la Terra unes 500.000 vegades més lluny però era impossible saber-ho per aquella època).

Amb el temps, els instruments se’n van anar perfeccionant i les observacions van augmentar en precisió. Van arribar a observar-se paralatges sorprenentment grans, encara que possibles. En 1669 Robert Hooke va mesurar la paralatge de l’estrella Gamma Draconis. Va resultar ser de 30". John Flamsteed va observar durant 8 mesos l’estrella Polar i va concloure que el seu paralatge era de 40".

En 1725, Sammuel Molyneux (1689-1728) va intentar detectar petits canvis posant un telescopi de 7,3 metres que va fer ell mateix, en posició pràcticament vertical, amb el que evitaria el problema de la refracció atmosfèrica i per a això ho va posar en el forat de la xemeneia de casa seva de manera que l’estrella Gamma Draconis, la mateixa que Hooke havia observat 55 anys endarrere, apareixia quan travessava el meridià per damunt del zenit. El telescopi va ser fixat perquè apuntés així tot l’any amb gran exactitud.

Amb Molyneux treballava un astrònom més jove anomenat James Bradley (1693-1762). L’oncle d’aquest últim era astrònom i va encomanar el seu interès al petit James. L’enorme aptitud per a les matemàtiques li van valer més tard l’amistat de Newton i Halley. Creient que no podria mantenir-se a costa de l’astronomia va entrar a l’Església com vicari en 1719 renunciant 3 anys més tard per fer-se catedràtic d’astronomia de la Universitat d’Oxford.

Però continuem, quan Molyneux va abandonar l’astronomia per la seva activitat política en l’Almirallat, Bradley va agafar el relleu. Anava mirant dia rere dia i mes després de mes. Resulta que Gamma Draconis primer es va moure cap al Sud i després cap al Nord. Després d’un any d’observació va veure que la paralatge era de 20" al sud i després 20" al nord. Per tant, l’oscil·lació anual en sentit nord-sud aribava als 40".

Bé, fins aquí tot sembla anar bé. El problema és que va instal·lar un altre telescopi més petit en 1727 i va veure altres 200 estrelles amb idèntiques anomalies a totes elles. Allò no podia ser un problema de paralatge. D’una estrella sí, però de totes?. D’altra banda si hagués estat així, quan la Terra estigués en la posició més meridional, és a dir, el desembre, hauria de ser quan més al nord estava l’estrella (si la Terra està més al Sud, l’estrella hauria de tenir la seva posició aparent més al Nord). I no era així sinó que va assolir aquesta posició el mes de març.

El setembre de 1728 se li va acudir la solució mentre viatjava en un vaixell en el riu Tàmesi. Va observar que el penell del vaixell canviava de direcció quan ho feia el rumb del mateix. Immediatament va ser a preguntar als mariners per què i li van explicar que la direcció del vent continuava sent la mateixa però que la posició del penell depèn de la velocitat del vent i de la velocitat del vaixell, indicant llavors la velocitat del vent relativa al vaixell.

L’exemple més clàssic és imaginar que esteu en plena pluja i obriu un paraigües sobre vosaltres. De moment, no us mulleu. Ara comenceu a caminar cap a davant. Us adoneu que heu d’inclinar el paraigües cap a davant per seguir sense mullar-vos. Si us poséssiu a córrer ho hauríeu d’inclinar encara més. La inclinació del paraigües depèn de la velocitat amb la qual correu i de la de la velocitat de les gotes de la pluja. Si la velocitat de la pluja fora infinita (diguem pluja instantània), no faria falta inclinar el paraigües.

I això és exactament succeeix en astronomia. En aquest cas, volem que les gotes donin de ple en el paraigües, és a dir, el telescopi. D’una banda, ens arriba la llum de les estrelles de la mateixa manera que les gotes de pluja. D’altra banda, la Terra corre en un sentit i després en un altre. Si no movem els telescopis, ens arriba la llum desplaçada de manera anàloga a la pluja. Si la llum tingués velocitat infinita no es donaria aquest efecte i així tenim una altra evidència que la velocitat de la llum és finita corroborant les tesis de Roemer. A aquest fenomen, Bradley li va dir "aberració de la llum".

Ja que la llum es desplaça molt més ràpidament que la Terra al voltant del Sol, la raó entre les velocitats és tal que el telescopi s’ha d’inclinat molt poc. Cal tenir en compte que la velocitat de la llum és 10.000 vegades més gran que la velocitat orbital de la Terra. Coneixent la inclinació del telescopi, Bradley va poder mesurar la relació entre les esmentades velocitats i va arribar a la conclusió que la llum travessa l’òrbita de la Terra en 16 minuts i 26 segons. Es va acostar encara més al valor que actualment tenim de la velocitat de la llum, ja que va calcular 283.000 km/s enfront dels 225.000 km/s de Roemer.

Però aquestes observacions no només donen una evidència científica a favor de que la llum té velocitat finita. Si la Terra estigués parada tampoc hauria aberració de la llum, així no només van corroborar la tesi de Roemer de velocitat de la llum finita sinó que va ser la primera prova científica i observacional que la Terra realment es mou!. Quina prova més elegant, no us sembla?.

Va publicar els seus resultats sobre l’aberració en la revista "Philosophical Transaction" de la Royal Society, en una memòria titulada "Account of a new discovered motion of the fixed stars". Va estimar aquest desplaçament angular màxim entre 20" i 20,5". El valor acceptat actualment és 20,49". Impressionant.

Però no va oblidar que el seu propòsit inicial era mesurar la patalatge de les estrelles. Va deduir de les seves observacions de Gamma Draconis que el seu patalatge ha de ser menor que 2" i possiblement, menor que 0,5". Faltaven 50 anys perquè Bessel comencés a mesurar patalatges estel·lars.

Bradley era un observador extraordinàriament cuidadós i no va quedar satisfet amb el seu descobriment de l’aberració. Havia detectat uns residus en els moviments estel·lars que no podien deure’s a l’aberració o la patalatge. Aquestes petites discrepàncies que no superaven els 2" per any que li van conduir al seu segon gran descobriment: la nutació.

La Terra no sempre té la mateixa inclinació girant al voltant del Sol, sinó que fa com una baldufa. L’eix de la baldufa descriu circumferències, que en el cas de la Terra ho fa cada 26.000 anys.

Veieu aquest eix que sempre mira per la part superior a l’esquerra? Doncs és el que dóna voltes com una baldufa. Quan passin 13.000 anys estarà invertit i tindrem a l’hemisferi Nord l’estiu el desembre i l’hivern el juliol (no estarem aquí per veure-ho). Doncs bé, aquests moviments tampoc són exactes: l’eix descriu una el·lipse de nutació, eixos de la qual Bradley els va estimar en 18" i 16". Els valors acceptats actualment són 18,42" i 13,75". Una altra vegada, impressionant.

Va fer encara més coses. En 1733 va mesurar per primera vegada el diàmetre de Júpiter i els astrònoms van començar a adonar-se de les magnituds astronòmiques amb les quals estaven treballant. Va descobrir un període de 437 dies en el moviment dels 3 satèl·lits interiors del planeta, període en el qual recorren les irregularitats del moviment degudes a la velocitat de la llum. Bradley va utilitzar el suggeriment de Roemer que la velocitat de la llum fa variar l’instant observat dels satèl·lits (curiosament Roemer només havia parlat de Io i mai ho va aplicar a la resta de satèl·lits).

En 1742, després de la mort de Halley, va ser nomenat el tercer astrònom real i va rebre subvencions per comprar nous instruments. Amb ells es proposava construir un mapa d’estrelles que superessin en extensió i exactitud als de Flamsteed i corregir així les posicions pels errors deguts a la refracció atmosfèrica, aberració de la llum i nutació que eren desconegudes fins aleshores.

Va fer precises observacions d’un gran numero d’estrelles utilitzant instruments de gran estabilitat mecànica, des de quadrants murals a instruments de trànsit. Va corregir les observacions pels efectes anteriorment citats amb la qual cosa va determinar posicions amb una precisió molt superior a la obringuda per Flamsteed. Va fer unes 60.000 observacions en Greenwich entre 1750 i 1762. Molts anys després de la mort de Bradley va ser publicat el seu catàleg estel·lar en 2 volums. Bessel, en la seva obra "Fonamenta Astronomiae", publicada en 1818, va presentar un catàleg de però de 3.000 estrelles, basat en les observacions de Bradley destacant que els errors de les posicions de Bradley eren menors de 4" en declinació i menors de 15" (és a dir la mateixa observació amb un error en el mesurament d’1 segon de temps) en ascensió recta. El catàleg de Bradley té encara avui aplicacions astronòmiques, en particular en la determinació de moviments propis d’estrelles. Impressionant de nou.

I pensar que tot va començar perquè de petit el seu oncle, que era astrònom, li va encomanar la seva passió. Havia de ser una persona interessantíssima.

Perà si encara fos poc tot això, va jugar un important paper a favor de l’adopció del calendari gregorià a Anglaterra. Per raons difícils d’entendre va haver molta gent a Anglaterra que es va oposar a aquest canvi donant-li alguns problemes. Segons Voltaire, el populatxo anglès preferia que el seu calendari estigués en desacord amb el del Sol abans que en concordança amb el del Papa.

Deu n’hi do, aquest Bradley, oi?

Font:
http://historias-de-la-ciencia.bloc.cat/post/1052/74268

Quant a omalaled

Me llamo Fernando y soy un apasionado de la ciencia y admirador de los científicos y ténicos de todas las épocas. Espero disfrutéis sabiendo un poquito más de ellos.
Aquesta entrada ha esta publicada en General. Afegeix a les adreces d'interès l'enllaç permanent.